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Abstract— We consider the general problem of geometric
task allocation, wherein a large, decentralized swarm of simple
mobile agents must detect the locations of tasks in the plane
and position themselves nearby. The tasks are represented by
an a priori unknown demand profile Φ(x,y) that determines
how many agents are needed in each location. The agents
are autonomous, oblivious, indistinguishable, and have a finite
sensing range. They must configure themselves according to Φ

using only local information about Φ and about the positions
of nearby agents. All agents act according to the same local
sensing-based rule of motion, and cannot explicitly communi-
cate nor share information.

We propose an approach based on gradient descent over
a simple squared error function. We formally show that this
approach results in attraction-repulsion dynamics. Repulsion
encourages agents to spread out and explore the region to find
the tasks, and attraction causes them to accumulate at task
locations. The figures in this work are snapshots of simulations
that can be viewed at https://youtu.be/1_5f0MnUJag.

I. INTRODUCTION

This work explores the topic of deploying a robotic swarm
of autonomous mobile agents over a region to locate and
carry out an a priori unknown set of tasks. The spatial
location of the tasks and the number of agents required to
complete them are not given to the agents in advance, and
may even change over time. The goal of the agents is to find
the tasks and to position themselves in the region based on
the requirements of each task. The agents must also relocate
in response to changes in the set of tasks - e.g., agents that
complete a given task should go on to help other agents
complete their tasks. Examples of this kind of setting include
search and rescue missions, where agents must find and assist
an unknown number of people, or forest fires, where the
spread and intensity of fire evolves over time and requires
varying numbers of firefighting drones to cover.

The problems and solutions considered in this work are
motivated by common assumptions made in the field of
swarm robotics. The objective of swarm robotics is to
coordinate a robotic task-force made up of a very large
number of simple mobile agents. The agents are assumed to
be disposable and redundant: there are more than enough of
them to satisfy the demands of all tasks even if some should
crash or become lost. Swarm robotics is uniquely positioned
to handle task allocation in unknown environments, because
the agents can quickly cover a very large area to locate the
tasks, and because there are enough agents that we need not
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worry about some of the agents not finding a task to work
on. The main goals of this work are:

1) To describe the general problem setting of geometric
task allocation for swarms of simple autonomous agents with
limited sensing range.

2) To study several different task allocation problems in
this setting.

3) To make the observation that sensing range limitations
can be overcome by gradient descent over a simple “error
function”, which results in local Attraction-Repulsion Dy-
namics (ARD).

The model. Assume N identical mobile agents are initi-
ated at arbitrary locations within some closed subregion L
of the plane R2 (such as the unit square L = [0,1]× [0,1])
and are able to move about R2 freely. The agents seek to
organize themselves within R2 in a manner determined by
a demand profile Φ(x,y) representing the requirements of
tasks. Φ(x,y) is assumed to be positive inside L and 0
outside of it. Different kinds of demand profiles may be
considered: for example, Φ(x,y) could indicate the required
number of agents near position (x,y), or Φ(x,y) could be a
probability density function representing the proportion of
agents that should be near (x,y) (as in Cortes et al. [8]), or
Φ(x,y) could be some heat map that needs to be “covered” by
agents (as in the signal coverage problem described below).

Let us denote the position of the ith agent at time t as
p⃗i(t) = (xi(t),yi(t)), and define:

q⃗(t) = (x1(t),y1(t),x2(t),y2(t), . . .xN (t),yN (t)) (1)

To determine how well the agents satisfy a given demand
profile, we define an error function Ψ(x,y, q⃗) based on Φ,
which measures the degree to which the demand Φ is not
satisfied at point (x,y) given the agents’ current positions q⃗.
The agents’ goal is to move to a position q⃗ that minimizes
the total error over all locations:

min
q⃗

∫∫
R2

Ψ(x,y, q⃗)dxdy (2)

Agents have no common frame of reference, are not aware
of distant agents’ positions, and do not know the entire
demand profile Φ in advance. Instead, we assume agents
possess local sensing capabilities, such that each agent can
sense other agents within a finite distance VA of itself and
knows their location relative to itself, and each agent can
sense the values of Φ within distance VA from itself.

Time is discrete. At every time step t = 0,1,2, . . ., the
agents make some small discrete jump in any direction based
on what they sense. The distance an agent can move in a
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single time step is assumed to be bounded by a parameter
∆ > 0. We assume the agents are oblivious, meaning they
have no memory of actions and computations from previous
time steps [5], and we assume agents cannot explicitly
communicate with each other. Hence, at a given point in
time t, each agent must determine its next move based only
on the information that it currently senses.

While agents can (locally) sense the demand profile Φ,
they cannot sense the error function Ψ. Whereas Φ deter-
mines the environmental information that agents can sense
about their tasks, Ψ determines the agents’ overall objective,
i.e., the type of task allocation problem they must solve. The
main task allocation problems considered in this work are:

1) Signal coverage, wherein each agent is surrounded by
a radial influence profile called its “signal” that represents,
e.g., its influence on nearby points, and agents must minimize
the squared error between their combined influence profiles
and Φ, hence “covering” Φ.

2) Target assignment, a highly related problem wherein
a finite number of discrete targets (e.g., search and rescue
tasks) are placed at unknown locations in the region, and
each location requires some predefined number of agents in
its vicinity.

For both of these problems, our goal is to find a cor-
responding error function and a local rule of motion that
minimizes the total error. This problem is a basic distributed
and decentralized task allocation issue, and similar problems
are often discussed in the literature. However, we could
not find any prior work that addresses this issue under
the combined assumptions of local sensing, decentralized
decision making, and no explicit inter-agent communication.
While sharing information among the agents may lead to
more optimal solutions, agents with communication are more
complex and expensive; moreover, local communication may
not always be feasible due to environmental conditions.

Our conservative assumptions about the agents’ capabili-
ties result in algorithms that are easy to implement and are
resilient to sudden changes or crashes: removing agents from
the system, or altering the demand profile Φ in real time
(e.g., due to changes in the environment or set of tasks) does
not break the algorithms, and agents correctly reconfigure
their constellation. The agents can thus seamlessly react to
changes in the environment or the tasks. As an example, Fig
1 shows a target assignment scenario where agents, starting
in the middle of the region, search for tasks placed randomly
within the region via ARD. Each task demands a different
number of agents to complete. When a sufficient number of
agents reach a task, the task is completed and removed from
Φ, freeing agents to move to other tasks.

II. RELATED WORK

The field of non-communicating, oblivious, visibility-
constrained agents is referred to as ant-like swarm robotics.
For further reading on ant-like swarm robotics, we refer
the readers to the surveys [5]. Although the literature on
swarm task allocation and task-based positioning is varied
and deep, covering centralized [25], [17], decentralized [21],
[20], [1], [15], [16], and non-geometric [29], [18], [22]

Fig. 1: Simulation of a target assignment scenario where targets
disappear upon reaching the demanded number of agents. Agents
move according to the electrostatic attraction-repulsion dynamics
outlined in (17). The current time step is written in the top left
corner of each frame. Agents’ sensing range is depicted by the
transparent gray disk (sensing range is depicted for a single agent
to prevent visual clutter). 200 agents begin at the center of the region
and expand outward, finding targets. The initial total demand of the
targets is 204.

models, we could not find any prior work that combined
all our assumptions of local sensing, decentralized, oblivious
decision making, and no explicit communication. These prior
works thus take advantage of assumptions and methods
that are not available to us, such as centralized trajectory
planning, prior knowledge of the world, or direct inter-agent
communication.

The closest works to ours that we could find are works
in dynamical systems along the lines of Gazi et al. [10],
[11], Cortes et al. [8] and Schwager et al. [28]. Our work
differs from these due to our sensing range constraints and
the different kinds of task allocation problems we explore,
such as signal coverage, and in several theoretical aspects
which we outline here. In works by Gazi et al. [10], [11],
as well as related works such as [31], [7], various types of
attraction-repulsion functions for stable swarm aggregation
are considered, occasionally alongside a demand profile
whose gradient guides the agents’ dynamics. In contrast
to Gazi et al. we do not assume Attraction Repulsion
potentials but show how they arise from minimizing the
squared error of a difference of demand profiles. In [27], [8]
demand profile functions similar to our Φ are used to guide
decentralized agents toward a desirable density distribution
and deployment formation based on Voronoi diagrams. These
works often represent environmental data as a multiplicative
function that weighs the global importance of a given point
in the region with regard to the agents’ objective. In contrast,
our work treats the demand profile, Φ, as a feature of the
agents’ sensing data on which the agents perform local
computations. Our approach is applicable to limited-visibility
settings, where agents have insufficient information to gauge
the global importance of a point in the region.

Halftoning is a graphical technique that attempts to ap-
proximate a continuous image using sets of black dots [12].
The image is represented by a 2D function Φ(x,y). In electro-
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static halftoning, the points are treated as particles that repel
each other, and Φ(x,y) determines the local magnitude of a
field of attracting forces [13], [26], [30]. The sum of these
repelling and attracting forces causes the particles to position
themselves so as to approximate the image expressed by Φ

- a task-allocation-like problem. Such models assume that
an agent can feel the forces exerted by Φ and other agents
globally whereas we assume that agents are not aware of
what happens beyond their visibility range VA. However,
it turns out that given a large enough number of agents,
halftoning techniques can serve as effective task allocation
algorithms even under such constraints - we explore this topic
in Section III-B.2.

The concept of using a probability mass function to dictate
the desirable density of agents at a given location has also
been explored in such contexts as “Optimotaxis”, Markov
chain-based task allocation, and convex optimization [19],
[9], [4]. However, unlike our present setting, these prior
works assume either communication or global knowledge
about the desired density Φ(x,y).

When Φ(x,y) is a constant function, our agents will spread
uniformly inside L , thus achieving uniform dispersion.
Various works have been written on the uniform dispersion of
agents in unknown regions and, more broadly, the coverage
of unknown regions via a small number of agents. These
works often share our assumptions of limited visibility and
no communication [3], [2], [23], and sometimes use potential
fields [24], [14]. However, these works are not directly
comparable to ours; the goal of coverage and/or uniform
dispersion is rather different from the task of positioning
agents according to a general and non-uniform, task alloca-
tion demand profile.

III. MULTI-AGENT TASK ALLOCATION

We consider two task allocation problems for limited-
visibility mobile agents. The first one is signal coverage,
in which a swarm of mobile agents surrounded by sensing
profile signals must organize in the region so that their
combined signal approximates an a priori unknown demand
profile Φ. The second related problem is target assignment,
in which there are K targets at a priori unknown locations,
and we want to bring a certain number of agents to the
location of each target.

We approach these problems through gradient descent on
an appropriate squared error function. We show that this
gradient descent naturally leads to ARD, wherein agents
repulse each other and are attracted to locations with high
values of Φ. Inter-agent repulsive forces cause the swarm
to expand uniformly, thus covering the region of interest
L and discovering the demand profile Φ. Attractive forces,
on the other hand, cause agents to accumulate according
to tasks’ requirements (e.g., in target assignment, we want
agents to accumulate at the locations of targets, so we have
these locations exert attractive forces). The number of agents
needed to cover L depends on the sensing range VA. When
the disk of radius VA is small compared to L , a large number

of agents is needed to execute this strategy, making it well-
suited for swarm robotics.

Section III-A formally describes the signal coverage
problem and the corresponding error function Ψ. We
show that gradient descent over the total error G (⃗q) =∫∫

R2 Ψ(x,y, q⃗)dxdy leads to an attraction-repulsion-based al-
gorithm for signal coverage. One approach to the target
assignment problem is representing it as a signal coverage
problem where there are highly concentrated signals at the
location of each target. Hence, III-A can also be applied
to the target assignment problem. An alternative ARD-
based approach to target assignment can be derived from
Coulomb’s law, by treating targets and agents as electrically
charged particles. In III-B we relate both approaches to a
general form of ARD. We also discuss scalar field coverage,
wherein agents spread across and cover a desired scalar field,
as an application of our approach.

A. Signal coverage and target assignment

In the signal coverage problem, each agent’s position is
surrounded by an influence signal d̃(x,y) which represents a
weighted radial region of interaction (e.g., the effectiveness
of a foam cannon stationed at the agent’s position on a fire
at (x,y), or the agent’s ability to gather data at coordinate
(x,y)). The agents seek to position themselves in L so as
to minimize the squared difference between their combined
signal and an “environmental demand profile” Φ(x,y) (repre-
senting, e.g., the heat map of a forest fire, or the importance
of collecting data at coordinate (x,y)). Formally, given Φ and
d̃, we define the error function:

Ψ(x,y, q⃗) =
(
Φ(x,y)−

N

∑
i=1

d̃(x− xi,y− yi)
)2 (3)

and our agents’ goal is to minimize

G (⃗q) =
∫∫

R2

(
Φ(x,y)−

N

∑
i=1

d̃(x− xi,y− yi)
)2 dxdy (4)

Note that this optimization goal is different from that con-
sidered by Cortes et al. [8], wherein Φ is treated as a
probability density function, and agents seek to minimize
the mean squared error of a randomly sampled point from Φ

to the closest agent. This leads to dynamics in which agents
head toward the center of their respective cell in a (possibly
weighted) Voronoi tessellation. In contrast, we minimize the
squared error of sums of symmetric functions (representing
the signals of agents and targets respectively), which leads
to ARD and different optimal configurations from [8].

Intuitively, the signal coverage model is applicable when
agents’ signals can usefully be combined and required to
complete a task at (x,y). For example, several noisy mea-
surements of (x,y) by different agents can be combined to
cancel out noise; several foam cannons at agents’ positions
can be combined to better affect a fire at point (x,y).

d̃(x,y) is assumed to be a symmetric, almost everywhere
differentiable function determined only by r =

√
x2 + y2. In

other words, there is a signal function f (r) such that d̃(x,y)=
f (
√

x2 + y2). For some parameter V , we assume that d̃(r) =
0 for all r >V (see Fig 2).
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Fig. 2: Some possible choices of the signal function f (r). Modify-
ing f will alter the optimal agent signal coverage formation, hence
also the agent dynamics.

For the time being, we generally restrict ourselves to the
case where Φ(x,y) is a weighted sum of K signals of the
same type as the agents’. The center of the kth signal is
denoted as c⃗k = (xS

k ,y
S
k). Specifically, we define Φ(x,y) = 0

for all (x,y) /∈ L , and otherwise define

Φ(x,y) = 1+
K

∑
k=1

nkd̃(x− xS
k ,y− yS

k) (5)

where nk is “the demand of the kth signal center”. We assume
that for all k, the disk of radius V centred at c⃗k is contained
in L .

The goal of this section is to show signal coverage can be
attained through discrete ARD, in which at every time step
the ith agent changes its position according to:

p⃗i(t +1) = p⃗i(t)−δ
v⃗i(⃗q(t))
∥⃗vi(⃗q(t))∥

,where

v⃗i(⃗q(t)) =
N

∑
j=1

F(∥ p⃗i − p⃗ j∥)−−→pi p j −
K

∑
k=1

nkF(∥ p⃗i − c⃗k∥)−−→pick

(6)

Here, F(·) is some real-valued function derived from f and
−→uv denotes the unit vector from u to v. Under these dynamics,
every agent is attracted to the centers of the signals, but
repulsed by other agents, by an amount that scales according
to distance. Since our agents’ sensing range is VA, we will be
interested in dynamics where F(r) = 0 for all r >VA, since
then each agent can always compute (6).

Target assignment. In the target assignment problem we
assume there are K targets at locations c⃗1, . . . c⃗K ∈L , and for
k, 1 ≤ k ≤ K, we want to bring nk ≥ 1 agents to the location
c⃗k. The targets’ locations are not known to the agents in
advance, and a target can only be detected by an agent at
distance VA or less. As we shall see, the degree to which
d̃(x,y) is concentrated near (0,0) determines the diffusion
of the agents around the centers of the signals. For example,
when d̃ is heavily concentrated near (0,0), we expect that in
an optimal configuration there will be nk agents very close to
the center of the kth signal. Through this observation, signal
coverage can be applied to the target assignment problem
(see Fig 4).

In Section III-B.2 we describe a different approach to
target assignment, based on Coulomb’s law.

1) Gradient descent and Attraction Repulsion Dynamics:
To motivate (6) as an algorithm for signal coverage, we
consider a gradient descent-based rule of motion that enables

the agents to minimize G (⃗q) while obeying the restrictions
of our model. Our objective is to show that the descent
dynamics can be rewritten as ARD of the form (6).

In gradient descent, the goal of each agent is to descend
the gradient of G by a small amount. The continuous-time
gradient descent dynamics for the ith agent are:

d p⃗i

dt
= −⃗vi(⃗q(t)),where v⃗i =

[
∂G
∂xi
∂G
∂yi

]
(7)

Since we are working in discrete time dynamics, we may
discretize this expression as:

p⃗i(t +1) = p⃗i(t)−δ
v⃗i(⃗q(t))
∥⃗vi(⃗q(t))∥

(8)

where 0 < δ ≤ ∆ is some predefined constant. Hence, at
every time step, the agents compute ∂G

∂xi
and ∂G

∂yi
. Let us

denote ∂ d̃(x−xi,y−yi)
∂xi

= d̃xi and ∂ d̃(x−xi,y−yi)
∂yi

= d̃yi :[
∂G (⃗q)

∂xi
∂G (⃗q)

∂yi

]
= 2
∫∫
R2

(Φ(x,y)−
N

∑
j=1

d̃(x−x j,y−y j))

[
d̃xi(x,y)
d̃yi(x,y)

]
dxdy

(9)
Recalling that Φ(x,y) = 1+∑

K
k=1 nkd̃(x− xS

k ,y− yS
k), we

split (9) into three summands:

(a) 2
∫∫
R2

[
d̃xi(x,y)
d̃yi(x,y)

]
dxdy

(b) 2∑
K
k=1

∫∫
R2

nkd̃(x− xS
k ,y− yS

k)

[
d̃xi(x,y)
d̃yi(x,y)

]
dxdy

(c) −2
∫∫
R2

(
∑

N
j=1 d̃(x− x j,y− y j)

)[d̃xi(x,y)
d̃yi(x,y)

]
dxdy

To compute (a), we first differentiate d̃xi(x,y):

d̃xi(x,y) =
∂

∂xi
f (
√
(x− xi)2 +(y− yi)2)

=− ḟ (
√
(x− xi)2 +(y− yi)2)

x− xi√
(x− xi)2 +(y− yi)2

We infer that d̃xi(x − xi,y) = −d̃xi(xi − x,y), and analo-

gously d̃yi(x,y− yi) =−d̃xi(x,yi − y). Hence (a) =
[

0
0

]
.

To compute the inner integral
∫∫
R2

d̃(x − xS
k ,y −

yS
k)d̃xi(x,y)dxy in (b), we may assume a rotated frame

of reference where yi = yS
k , and later return to the original

frame of reference via the inverse rotation M−1
k . We further

apply the coordinate transforms x = x− xi, y = y− yi to get:∫∫
R2

nkd̃(x− xS
k ,y− yS

k)d̃xi(x,y)dxdy

= nk

∫∫
R2

d̃(x−∥ p⃗i − c⃗k∥,y)d̃xi(x+ xi,y+ yi)dxdy

=−nk

∫∫
R2

f
(√

(x−∥ p⃗i − c⃗k∥)2 + y2
)

ḟ (
√

x2 + y2)
x√

x2 + y2
dxdy

(10)

We can therefore define a function F(·) such that (10) ≜
−nkF(∥ p⃗i− c⃗k∥). We have that F(∥p⃗i− c⃗k∥) = 0 when ∥p⃗i−
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c⃗k∥ ≥ 2V (since in such cases d̃(x− xS
k ,y− yS

k)d̃xi(x,y) is 0
everywhere). We also see that:

∫∫
R2

nkd̃(x− xS
k ,y− yS

k)d̃yi(x,y)dxdy

=−nk

∫∫
R2

d̃(x− (xS
k − xi),y) ḟ (

√
x2 + y2)

y√
x2 + y2

dxdy = 0

since the integrand is an odd function in y. Returning to
the original frame of reference, we see that

∫∫
R2 d̃(x−xS

k ,y−

yS
k)d̃xi(x,y)dxdy = F(∥ p⃗i− c⃗k∥)M−1

k

[
1
0

]
= F(∥ p⃗i− c⃗k∥)−−→pick,

where −−→pick is a unit vector from p⃗i to c⃗k. Consequently,

(b) =−2
K

∑
k=1

nkF(∥p⃗i − c⃗k∥)−−→pick

meaning that (b) is a sum of vectors from the ith agent to
each signal center at a distance V or less from it. By the
same method, we can compute (c) and conclude that:

v⃗i(⃗q) = 2

(
N

∑
j=1

F(∥ p⃗i − p⃗ j∥)−−→pi p j −
K

∑
k=1

nkF(∥ p⃗i − c⃗k∥)−−→pick

)
Since at time t + 1 the ith agent updates its position

to p⃗i(t)− δ
v⃗i (⃗q)

∥⃗vi (⃗q)∥ , we can interpret our agents’ dynamics
as given by a ARD-system, where the agents are pulled
toward the signal centers and pushed away by nearby agents
at a magnitude determined by F(·). Since F(r) equals 0
whenever r > 2V , we see that the ith agent only needs
visibility range VA = 2V to compute v⃗i(⃗q). Hence, setting
V =VA/2 guarantees that our agents can move according to
the dynamics (8).

Example computation. Let us provide an explicit com-
putation of F(·). Suppose VA = V = ∞ and f (r) = e−Λr2

.
Plugging f into (10) we see that:

F(r) =
∫∫
R2

e−Λ((x−r)2+y2)(2Λe−Λ(x2+y2)x)dxdy

=
√

2πΛ ·
r
√

π

2 e−
1
2 Λr2

2
√

Λ
=

1
2

πre−
1
2 Λr2

(11)

To account for agents with limited visibility, we can
introduce the cut-off point VA/2 to f such that f (r) = e−Λr2

for all r ≤VA/2 and f (r) = 0 for all r >VA/2, and recompute
(10). As discussed above, the resulting function will equal
0 for all r >VA. When Λ is sufficiently large, F(VA) is very
close to 0, so as a crude approximation we may set the cut-off
point VA directly as part of F , such that F(r) = 1

2 πre−
1
2 Λr2

for all r ≤VA and F(r) = 0 otherwise.
Increasing the parameter Λ results in a more concentrated

signal function f , hence results in agents concentrating closer
to the centers c⃗i - see Fig 3. As mentioned , when f is highly
concentrated near 0, signal coverage can be used for target
assignment. This is illustrated in Fig 4. We emphasize that
this is just an example, and there are infinite possible choices

of f leading to different dynamics. We also note that even
when an analytic expression for (10) is not available, the
agents’ dynamics can be efficiently computed by caching
numerical approximations of F(r), since F(r) is a one-
dimensional function that equals 0 outside the interval [0,VA],
it is non-expensive to approximate and cache.

Fig. 3: The top row and bottom row depict two simulations of
signal coverage attraction-repulsion dynamics with signal function
f (r)= e−Λr2

. In the top row Λ= 1, and in the bottom row Λ= 1000.
In both simulations, there is a single signal center with demand
n1 = 1. The heat map illustrates the values of the error function Ψ

given the current agent positions. The rightmost (i.e., third) frame
of each simulation shows the agent formation that minimizes the
total error G . Larger values of Λ cause the agents to concentrate
closer to the signal center. Note that Ψ and G are different functions
in the first and second simulation since they both depend on f .

Adding random noise. Depending on VA and the size of
the subregion L , agents may be unable to see any other
agent or target. An isolated agent acting on the dynamics
outlined in (8) doesn’t move. This is undesirable: we would
like such agents to explore their environment and search
for other tasks. To resolve this, we may add a stochastic
component to the dynamics such that at every time step, the
ith agent will move based on:

p⃗i(t +1) = p⃗i(t)−δ
v⃗i(⃗q(t))
∥⃗vi(⃗q(t))∥

+ r⃗ (12)

where r⃗ is a uniformly random vector of magnitude ∥r∥ ≤
∆− δ . Random noise has the effect of breaking deadlocks
and causes isolated agents to keep exploring the environment.
To prevent agents from wandering too far from L (i.e., the
region of interest that contains the signals), if (12) would
move an agent to a point where Φ(x,y) = 0, the agent instead
stays put.

2) Signal coverage for nonidentical profiles: Instead of
having each signal center emit the same (weighted) signal d̃,
we may define Φ(x,y) as a sum of different signals:

Φ(x,y) = 1+
K

∑
k=1

d̃k(x− xS
k ,y− yS

k) = 1+
K

∑
k=1

fk(∥
[

x
y

]
− c⃗k∥)

where d̃k(x,y) = fk(∥
[

x
y

]
∥) is a symmetric function repre-

senting the environmental signal centred at c⃗k, and similar
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Fig. 4: Signal coverage attraction-repulsion dynamics for agents
with limited sensing range. We set f (r) = e−1000r2

where r <VA/2
and f (r) = 0 otherwise. The numbers on each signal denote the
number of agents in its proximity, and the value of ni. The gray disk
depicts agents’ visibility range. Since f (r) is highly concentrated
at 0, we see that ni or more agents concentrate at the ith signal
center, in effect completing a target assignment task. The heat map
illustrates the values of Ψ. given the current agent positions. The
time step and value of G are shown in the top left corner of each
frame.

to before we assume fk(r) = 0 for all r ≥ V . We thus need
to compute the gradient (9). Carrying out the same analysis
as for the non-general case,we see that gradient descent on
G leads to generalized ARD of the form:

p⃗i(t +1) = p⃗i(t)−δ
v⃗i(⃗q(t))

∥⃗vi(⃗q(t))∥

v⃗i(⃗q) =
N

∑
j=1

F(∥p⃗i − p⃗ j∥)−−→pi p j −
K

∑
k=1

Fk(∥ p⃗i − c⃗k∥)−−→pick

(13)

When fk = nk f we get Fk = nkF , reducing (13) to (6).

B. Generalized attraction-repulsion dynamics

In the previous subsection we gave a method for multi-
agent signal coverage based on attraction-repulsion dynamics
of the form (13). We showed that these dynamics arise
naturally from gradient descent over an appropriate Ψ func-
tion. As an alternative way of thinking about these above
dynamics, we can relate them to a general form of attraction-
repulsion dynamics similar to that which appears in [11],
where at every time step the ith agent moves according to
the rule of motion:

p⃗i(t +1) = p⃗i(t)−δ
v⃗i(⃗q(t))

∥⃗vi(⃗q(t))∥

v⃗i(⃗q) =
N

∑
j=1

h(∥p⃗i − p⃗ j∥)−−→pi p j −
∂

∂ p⃗i
Φ(p⃗i)

(14)

in which h(r) : R≥0 → R is some function and 0 < δ ≤
∆ is a constant. We can understand h as a repulsive force
between agents, and the gradient of the demand profile Φ as
an attractive force: at every time step the ith agent attempts
to climb the gradient of Φ, but is repulsed by the jth agent by

an amount dependent on their distance. Because the agents’
sensing range is VA, we assume that h(r) = 0 for all r >VA.

The goal of this section is (i) to note that the dynamics
(13) are a special case of (14) and (ii) to propose several al-
ternative approaches to task allocation that can be recovered
from this general form.

The dynamics of (13) are derived from gradient descent
over the total error

∫∫
R2 Ψ(x,y, q⃗)dxdy where Ψ(x,y, q⃗) =(

Φ(x,y)−∑
N
i=1 d̃(x−xi,y−yi)

)2. We would be remiss if we
didn’t ask whether the dynamics (14) similarly minimize
some error function, and whether they can similarly be
justified through gradient descent. In other words, we would
like to know if there exists Ψ such that the gradient ∂G

∂ p⃗i
(⃗q)

of the total error G (⃗q) =
∫∫

R2 Ψ(x,y, q⃗)dxdy at q⃗ equals the
vector v⃗i(⃗q) in (14). Such a Ψ does exist:

Ψ(x,y, q⃗) =
(
− 1

2

N

∑
j=1

H(∥
[

x
y

]
− p⃗ j∥)−Φ(x,y)

)N

∑
i=1

δ (x− xi)δ (y− yi)

(15)
where δ is the Dirac delta function and H is any almost
everywhere differentiable function. The total error which the
agents seek to minimize under this function, G (⃗q), equals:

∫∫
R2

(
− 1

2

N

∑
j=1

H(∥
[

x
y

]
− p⃗ j∥)−Φ(x,y)

)N

∑
i=1

δ (x− xi)δ (y− yi)dxdy

=−1
2 ∑

1≤i, j≤N

H(∥ p⃗i − p⃗ j∥)−
N

∑
i=1

Φ(p⃗i)

hence the gradient at q⃗ is

∂G

∂ p⃗i
(⃗q) = ∑

1≤ j≤N

Ḣ(∥p⃗i − p⃗ j∥)−−→pi p j −
∂

∂ p⃗i
Φ(p⃗i) (16)

Defining h(r) = Ḣ(r), we see that the dynamics (14) are
precisely discrete gradient descent dynamics over G .

We now discuss several task allocation strategies that can
be recovered as special cases of (14), i.e., through gradient
descent over

∫∫
R2

Ψ(x,y, q⃗)dxdy for appropriate choices of H

and Φ.

1) Signal coverage: We ask whether the dynamics (13)
we derived for signal coverage can be recovered as a special
case. Recall that (13) depends on two integrable functions:
F and Fk. Let us set H(r) =

∫ r
0 F(x)dx, Hk(r) =

∫ r
0 Fk(x)dx

and Φ(x,y) =−∑
K
k=1 Hk(∥

[
x
y

]
− c⃗k∥). We compute that

∂

∂ p⃗i
Φ(p⃗i) =−

K

∑
k=1

∂

∂ p⃗i
Hk(∥p⃗i − c⃗k∥)

=
K

∑
k=1

Fk(∥ p⃗i − c⃗k∥)−−→pick, which implies

(16) =
N

∑
j=1

F(∥ p⃗i − p⃗ j∥)−−→pi p j −
K

∑
k=1

Fk(∥p⃗i − c⃗k∥)−−→pick
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hence, for these choices of H and Φ, (14) equals (13).

2) Electrostatic target assignment and Coulomb’s law: In
Section III-A we described the target assignment problem,
and noted that it can be represented as signal coverage
problems where Φ is highly concentrated at each target
location. This led us to propose signal coverage as a method
for target assignment. Another approach to target assignment
is based on Coulomb’s law, which states the attraction or
repulsion forces between two point electric charges q1, q2 is
kq1q2/r2, where r is the distance between the charges, and k
is a scaling factor. The idea is to assign each agent a positive
charge, creating repulsion between pairs of agents, and each
stationary target task a negative charge, creating attraction
between agents and targets. Such an approach to particle
control is widely used in image halftoning [13], [26], [30],
in multi-robot collision avoidance and search and rescue [6],
and more. Here we discuss this approach in the context of
target assignment for large swarms of agents with limited
visibility, and show that it is a special case of (13).

We begin with the case of infinite visibility where VA = ∞,
i.e., agents can sense other agents and targets at any distance.

Let H(r) =− 1
r and Φ(x,y) =−∑

K
k=1 nkH(∥

[
x
y

]
− c⃗k∥).

Inserting these expressions into (16) we get

∂G

∂ p⃗i
(⃗q) = ∑

1≤i≤N

Ḣ(∥p⃗i − p⃗ j∥)−−→pi p j −
K

∑
k=1

nkḢ(∥ p⃗i − c⃗k∥)−−→pick

= ∑
1≤ j≤N

−−→pi p j

∥p⃗i − p⃗ j∥2 −
K

∑
k=1

nk

−−→pick

∥ p⃗i − c⃗k∥2

(17)

This first-order dynamics (17) resembles Coulomb’s force
acting on targets with a positive charge of magnitude nk and
agents with a negative charge of magnitude 1.
If VA is finite, we may define a cut-off point for H, making it
so that agents are not affected by other agents and targets at

distance greater than VA, yielding HVA(r) =

{
− 1

r r ≤VA

0 r >VA
.

This results in dynamics that can be computed by agents
with visibility range VA.

Let us briefly relate the electrostatic target assignment
approach to our previous, signal coverage-based approach:
note that if we could find a signal f for which the integral
(10) equalled HVA(r), plugging this f into the ARD we used
to solve signal coverage, (6), would precisely yield (17).
However, it seems difficult to find such an f . Hence, although
(17) is of a very similar form to (6), we leave open the
question of whether it can be recovered as a special case of
signal coverage. Fig 5 and 6 illustrate a target assignment
task using electrostatic ARD.

3) Scalar field coverage: Moving away from target as-
signment, let us consider the problem of covering an arbitrary
scalar field with agents (Figure 7). One way to do this is to
let Φ(x,y) be our scalar field and model the repulsion forces
of the agents the same as any of our proposed approaches to

Fig. 5: Electrostatic target assignment. The number of agents
demanded by each target and the number of agents in each target’s
proximity are depicted. Agent sensing range is illustrated by the
gray disk. There are 250 agents, and the total demand of the targets
is 140. Agents are all initiated at the center of the region.

Fig. 6: Electrostatic target assignment with many targets and agents,
showcasing a high degree of scalability. The total demand of the
targets is 1240, each target demands 3 agents, and the number of
agents is 2000. Targets not drawn for the sake of visual clarity.
Agent sensing radius, not depicted in the image, is 1/10th of the
bounding box.

target assignment. When using Section III-B.2’s electrostatic
ARD as the base model we get the following dynamics for
the ith agent:

∂G

∂ p⃗i
(⃗q) = ∑

1≤ j≤N

−−→pi p j

∥p⃗i − p⃗ j∥2 − ∂

∂ p⃗i
Φ(p⃗i) (18)

For example, when Φ(x,y)= ax+by is a linear scalar field,
∂

∂ p⃗i
Φ(p⃗i) =

[
a
b

]
and so agents will move in the direction []

while spreading out due to repulsion forces. When Φ(x,y) =
c · e−Λ(x2+y2) the agents will gather near the maximum
of Φ(x,y) in a diffusive fashion (note that we also used
exponential demand functions in signal coverage, but because
the error function Ψ is different in signal coverage, we get
different dynamics).

IV. CONCLUSION

We explored the topic of geometric task allocation for
swarms of oblivious, decentralized agents with limited sens-
ing range. We discussed two task allocation problems: signal
coverage, wherein robots must “cover” an a priori unknown
demand profile Φ(x,y) with influence profiles, and target
assignment, wherein targets are placed in discrete, a priori
unknown locations, and agents must find the targets and
move to their location.
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Fig. 7: Coverage of a linear demand function of the form Φ(x,y) =
c(x+ y) (top row), or an exponential demand function of the form
Φ(x,y) = c · e−Λ(x2+y2) by 500 agents (bottom row). The heat map
depicts Φ(x,y).

Our solutions to these problems optimize an error function
and result in attraction-repulsion dynamics: agents repulse
each other, encouraging exploration of the environment,
and tasks attract agents, causing the agents to organize
according to the tasks’ requirements. In signal coverage, such
dynamics are derived from gradient descent over the squared
error Ψ(x,y, q⃗) =

(
Φ(x,y)−∑

N
i=1 d̃(x− xi,y− yi)

)2. Despite
squared errors being a natural thing to look at, surprisingly,
we could not find any work in the literature obtaining ARD
from the squared difference of signal functions. We proposed
two different approaches to target assignment. The first is
treating it as a signal coverage problem with highly concen-
trated environmental signals at the location of each target.
The second is electrostatic target assignment via Coulomb’s
law. Finally, we related our solutions to a general form
of attraction-repulsion dynamics, and discussed additional
applications such as scalar field coverage.
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