2022 IEEE International Conference on Robotics and Automation (ICRA) | 978-1-7281-9681-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICRA46639.2022.9811861

2022 IEEE International Conference on Robotics and Automation (ICRA)

May 23-27, 2022. Philadelphia, PA, USA

Integrating Deep Reinforcement and Supervised Learning to Expedite
Indoor Mapping

Elchanan Zwecher!, Eran Iceland?, Sean R. Levy?, Shmuel Y. Hayoun®, Oren Gal® and Ariel Barel®

Abstract— The challenge of mapping indoor environments is
addressed. Typical heuristic algorithms for solving the motion
planning problem are frontier-based methods, that are espe-
cially effective when the environment is completely unknown.
However, in cases where prior statistical data on the environ-
ment’s architectonic features is available, such algorithms can
be far from optimal. Furthermore, their calculation time may
increase substantially as more areas are exposed. In this paper
we propose two means by which to overcome these shortcom-
ings. One is the use of deep reinforcement learning to train the
motion planner. The second is the inclusion of a pre-trained
generative deep neural network, acting as a map predictor.
Each one helps to improve the decision making through use of
the learned structural statistics of the environment, and both,
being realized as neural networks, ensure a constant calculation
time. We show that combining the two methods can shorten the
duration of the mapping process by up to 4 times, compared
to frontier-based motion planning.

[. INTRODUCTION

Indoor mapping by an autonomous agent is a practical task
that has been researched for many years. We are given an
agent with navigation peripheral range-sensing capabilities.
The agent aims to construct a map of its environment through
exploration in minimal time. In terms of the motion planning,
the goal is to find an optimal strategy that will allow the agent
to complete this task. Indoor mapping can be categorized into
one of two types, corresponding to the available information
about the environment:

Mapping an unknown environment: There is no informa-
tion about the structure, except perhaps its boundary, and the
fact that all rooms are accessible. This problem is in fact the
easiest problem to optimize, since there is little knowledge
to rely on. It can be solved using frontier-based algorithms,
by which the agent always moves towards a chosen point on
the boundary ("front") between the observed and unobserved
areas. Each of these algorithms is distinguished by its point
selection logic (e.g. the nearest point, the point with the

1Elchanan Zwecher is with the Computer Science De-
partment, Hebrew University of Jerusalem, Jerusalem, Israel
elchanan4567@gmail.com

2Eran Iceland is with the Computer Science Department, Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel eran.iceland@gmail.com

3Sean R. Levy is with the Faculty of Aerospace Engineering, Technion
- Israel Institute of Technology, Haifa, Israel sean2102@gmail.com

4Shmuel Y. Hayoun is with the Faculty of Aerospace Engi-
neering, Technion - Israel Institute of Technology, Haifa, Israel
shmuli.hayoun@gmail.com

50ren Gal is with the Geo-information Department,
Technion - Israel Institute of Technology, Haifa, Israel
orengal@alumni.technion.ac.il

6Ariel Barel is an academic visitor at the Computer Science De-
partment, Technion - Israel Institute of Technology, Haifa, Israel
arielba@technion.ac.1il

highest exposure potential, etc.). These front-based algorithm
are guaranteed to complete the mapping process.

Mapping a partially-known environment: Although the
specific environment is unknown, the statistics of its archi-
tecture are available to the exploring agent. In this case, this
knowledge may utilized to expedite the mapping process.
This case is probably more common than one might expect,
since most buildings share typical properties, such as straight
continuous and perpendicular walls, continuous spaces, rel-
atively rectangle rooms, wide enough corridors, etc. Here
heuristic frontier-based algorithms that do not incorporate
any knowledge of the structural statistics may be far less
effective than in the previous case.

Our present work focuses on the second type of problem.
In order to integrate the statistics into the motion planning
it is possible to manually derive a set of intuitive rules
(straight walls, corners, etc.). However, this is limited to a
human’s capability of interpreting large and fairly abstract
amounts of data into concise correlations between different
architectonic features. In the present work we propose the
use of deep learning (DL) and deep reinforcement learning
(DRL) techniques in order to incorporate any available
statistical data more effectively.

Machine learning (ML) in general involves the process of
automatically extracting insights from statistical data for the
purpose of decision making. The field first addressed tasks
such as image classification, voice recognition and others
which involved providing one-time solutions. In recent years
the field has also broken out in the direction of RL for solving
serial problems, that is of setting a strategy or policy in
which each decision influences the next decision [1] [2]. RL
has been extensively studied as a policy generator for games
such as Atari, Chess, Go and Backgammon. In these tasks,
the agent’s early decision affects its subsequent decisions
and, ultimately, the final result. Learning by reinforcement
in gaming has shown impressive results [3] [4], better than
algorithms which are not based on an offline study of the
statistical properties of data available a priori, but rather
on running online simulations of the specific task (e.g.
rule-based methods or online statistical-based methods, like
Monte-Carlo). The success of RL in gaming is due to the
fact that extensive training can be performed offline on huge
amount of data, which can be easily generated for a large
variety of scenarios. While developments in both algorithms
and computational capabilities have greatly improved the
performance of DL and RL, the bottleneck in many cases
remains the quality of the training datasets.

There are some basic requirements for a serial decision

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 10542

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

problem to fit into an RL framework, all of which are
met when considering indoor mapping. First, is the ability
to collect or simulate a lot of typical data representing
the problem. One of the reasons for the great success of
RL in gaming is the ability to simulate huge amounts of
totally typical data. Fortunately, there are available datasets
of building floor plans and, more importantly, such datasets
can be generated. The second condition is that the problem
must be Markovian, i.e. the outcome of an action depends
only on the current state. Any serial decision problems that
complies with this rule is called a Markov Decision Process
(MDP). In some cases it is pertinent to encapsulate more
than one state in order to obtain a good policy. One way to
address this, while preserving the MDP formulation, is with
an appropriate definition of the state. For instance, in our
case, where the observations constitute the main element in
representing the state, the current observation is insufficient.
Rather, the state should include the accumulation of all past
and current observations. Finally, even though the number
of states in which the agent may be present is very large,
defining a relatively small number of possible actions better
facilitates the training process.

II. RELATED WORK

Until recently a leading method for indoor mapping was
the frontier-based approach [5] [6], in which the agent
searches forward towards the frontier between the explored
regions and the unexplored ones. The main task of the algo-
rithm designer was to choose the appropriate target location
on the frontier. This choice is done greedily and is controlled
by tuning the utility-based function, that balances between
the expected area to be exposed at the selected point, and the
distance to this point. Following the remarkable results deep
reinforcement learning (DRL) has shown when dealing with
complicated problems, such as video games and board games
[1] [3] [4] [7], sample-based approaches, mainly DRL-based
methods, have become a popular choice when tackling the
indoor mapping problem [8] [9]. In learning navigation
policies through DRL various strategies are explored by
actively interacting with the environment, bringing about
further breakthroughs in autonomous navigation.

In [8] [9] [10] a path planner is trained with DRL using a
deep Q-network (DQN) or the Advantage Actor-Critic (A2C)
algorithm, with a reward function based on the exposed
area or on mission completeness. In these publications, the
results are slightly weaker than frontier-based methods in
terms of number of steps (or time). However, in [9] the
authors state that the decision-making itself using DRL-based
algorithms may be faster when scaling up to larger domains.
This is due to the fact that neural nets provide a constant
calculation time compared to frontier-based methods that
use heavy graph search. Hence, the main gain of using
DRL stated in [9] is related to computational issues and
is not a result of statistical considerations. In particular,
the DRL results in [9] are similar to corresponding classic
results, in terms of number of required actions while we
seek to show that DRL outperforms Frontier-based methods.

In [11] DRL is used to learn a point selection strategy as
part of a frontier-based exploration algorithm. The policy
network was trained using the Asynchronous Advantage
Actor-Critic (A3C) algorithm. It was shown that this setup is
superior to several variations of the cost-utility frontier-based
method.Anyway, the suggested method their is a combination
of frontier-based and reinforcement learning and not pure
DRL one.

In [12] the authors presented an end-to-end obstacle
avoidance and navigation system based on DRL. They show
that using a continuous action space as well as defining the
state to be the last three observations (and not only the last
one) improve agent’s performance. However, since their work
focuses on obstacle avoidance and not on overall mapping
of a delimited area, it cannot be compared to frontier-based
algorithm. Similar works are [8] which focuses on outdoor
mapping (whose statistics characteristics are different) and
[9] which focuses on navigation. Hence both cannot be
compared to the frontier-based methods.

Another way to incorporate the known statistics of the
environment is by using ML methods to obtain a prediction
of the architecture in the unseen regions. Such a method is
presented in [6], where a variational autoencoder (VAE) is
used as a map completion tool. In this work the required
mapped area is segmented and each part is mapped sequen-
tially, while the map completion network is used to select a
frontier target which should be actually mapped. In previous
work [13] we use a map completion deep network to enhance
mapping, while the mapping itself is done relying on the map
completion module.

In this paper we integrate both the map completion module
and the RL module to enhance the mapping process.

ITII. PRELIMINARIES

An MDRP is a 4-tuple (S, A, Ps, Ra). S is the state space
and A is the action space. P, represents the stochastic
dynamics of the process (i.e. Py(s,s’) is the conditional
probability of transition from state s to state s’ after taking
action a). R (s, s’) is the temporal reward for the transition
from state s to state s’ following action a. A policy 7 : S —
A is a function that maps a state to a subsequent action. The
goal is to find a policy that maximizes the expected sum of
decaying rewards

E Z’)/tRﬂ-(st) (Stapw(st,)(st») (1
t=0

where 7 € [0,1] is the discount factor that exponentially
decreases distant future rewards that are less guaranteed due
to the uncertainty of the process.

MDPs may be possible to solve analytically if the state
space is small and the dynamics of the process are known.
However, in many practical problems, such as ours, both
conditions are not met.

IV. PROBLEM FORMULATION

We consider the problem of mapping an unknown build-
ing, the boundary of which is known a priori, by an

10543

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

autonomous agent equipped with 360° peripheral limited
range sensors. The problem is simplified by neglecting any
measurement noise and by assuming that the localization
problem is solved. The structure to be mapped is regarded as
a 2D occupancy grid, in which each cell may be either free
space or an obstacle. The agent’s objective is to minimize
the time to expose a desired portion of the map. At each
time step the agent can move to any of its eight neighbors
in the grid.

In accordance with the MDP formulation discussed in the
previous section, we define the state s as a discrete 2D map
of dimensions i X w in which each cell (z,y) can have one
of four distinct values

Cree, if (z,y) is observed free space
s(@,y) = Cobstacle 1f (,y) is observed obstacle)
7 Cunknown if (x,y) is unobserved
Cagent the agent’s location.

In the following sections these four values are considered
hyperparameters that should be chosen carefully (e.g. Cagent
should be dominant enough so that learning-based methods
are able to easily detect its uniqueness).

The set of possible actions is given by

‘AG {T?/‘J_>J\H\l/7\/7e7\}' (3)
V. DRL ALGORITHM DESIGN

Problems such as indoor mapping, in which the state
space is extremely large and the dynamics of the process are
unknown, are impossible to solve analytically. Fortunately,
as long as the state space can be represented in a compact
way (e.g. matrix), a policy that optimizes the MDP objective
function (1) can be derived using Q-learning or policy
gradient methods [2]. Essentially, both approaches try to
learn a parametric function that describes the "quality" of
an action in a specific state. Up until the last decade, most
of the ML community tried using convex representations of
this function that are optimized easily, though less expressive.
In recent years it has become commonplace to use neural
networks — a much more expressive, albeit non-convex,
hypotheses class.

Several design choices need to be made when implement-
ing an RL algorithm. First, the state and reward function must
be delineated. Second, a specific algorithm and parametric ar-
chitecture should be selected. Finally, the algorithm’s hyper-
parameters need to be tuned.

A. State and Memory

We used a grayscale (single channel) image to represent
the state s. We found that the best values to optimize learning
speed maintain Cfee < Cunknown < Cobstacle <K Cagent (we
used Cpree=0, Cunknown=15, Cwan=30, and cagen=255). We also
discovered that fixing the agent to the center of the image, as
in [9], significantly improves the results. Regarding the use
of memory, we did not observe additional value by storing
more than the last state. This is understandable, since state
derivatives are inconsequential to the mapping process.

B. Reward Function

Two conceptually different reward functions can be used:
one that yields all the reward at the end of an episode (sparse)
or one that provides a series of temporal rewards. The authors
of [10] compared these two options and concluded that the
second is preferable. This is not surprising, since rewarding
momentary partial exposures encourages the agent to expose
more cells, hence speeding up the learning process.

1) Penalties: An important ingredient in the reward func-
tion is the compensation for completing the mapping task in a
swift and safe manner. The temporal style of this component
comes in the form of deduction. In our case the agent is
penalized by a constant for each step taken, motivating it
to complete the mapping as quickly as possible. In order to
effectively train it to navigate safely, the agent is penalized
by a relatively large value ¢ > 1 for actions that will lead it
to collide with an obstacle (in training such actions are not
executed to enable an episode’s persistence).

2) Rewards: Following each action the agent receives
an immediate reward proportional to the total size of any
newly exposed areas. Although this enabled the agent to
learn quite easily how to map most of the building, it still
struggled to expose the last portions that might be far away
from its location. To help the agent in learning to expose
those challenging parts of the environment a non-stationary
reward was added, which increases with the size of the area
mapped so far. Choosing a convex function for this purpose
ensured that the agent’s training would be effective even as
the amount of unexposed cells decreased.

The final reward function was chosen to be

—/{, if a; leads to collision

4
d-npp1 - EYset1),

Ra, (8¢, 5t41) = 1+{

else.

Here d is a normalizing coefficient, n;;; is the number of
cells that were exposed following action a;, and E(s;) €
[0,1] is the ratio between the exposed area in s;y; and the
total area of the building.

C. Algorithm

Several algorithms of both Q-learning and policy gradient
methods were examined, namely: DQN, A2C, and Proximal
Policy Optimization (PPO). Of those we found that PPO
yielded the best results, both in terms of training duration
and in terms of the quality of the results, hence it was our
RL algorithm of choice.

D. Architecture

The CNN introduced in [1] was used in the learning of the
policy. The output layer of the network includes nine scalars:
eight for the policy distribution (actor) and an additional
ninth which estimates the value function (critic). In this ar-
chitecture, the networks of the value function and the policy
distribution are the same. Several other network architectures
were examined (such as MLP and some variations of the
CNN network), but none yielded better results.

10544

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

VI. DL-BASED MAP PREDICTION

Another mode by which the underlying statistics of the
environment can be reflected is the inclusion of an DL-
based map predictor, developed by the authors in previous
work [13]. The predictor itself is a composition of two
functions f threshold © f prediction» where f prediction represents an
obstacle-predicting network and fieshold 1S @ thresholding
function. fprediciion is given by a ResNet-styled convolutional
autoencoder (see Figure 1). Auotencoders are effectively
utilized for tasks such as anomaly detection [14] and image
restoration [15]. In our application the network is trained
to output a probabilistic estimation of the complete map,
given partial observations. It is essentially a function from
the observation space to the space of obstruction probability
maps

fprediction 0 — [07 1]h><w , ®)

where O = {Cfiee, Cobstacle, Cunknown } % is the observation

space, and where the output value O indicates certain free
space and 1 indicates certain obstacles. The thresholding
function finreshold Mmaps the probabilistic output from fpredictions
denoted by p,, € [0,1]"*", back to the observation space.
It does so with the use of two confidence levels, d¢e. and
Oobstacles 1N the following manner:

1 — 65
Chrees pm(z,y) < Tm
fthreshold (pm(xa y)) = 1 + dobstacle
Cobstacle; Pm (xa y) > f
Cunknown, Otherwise.
(6)

The thresholds actually determine the trade-off between
the number of false positives and negatives and the map
construction rate. The chosen set of values was obtained
through trial and error until a good balance between the
thresholded prediction’s F7j-score and the mapping duration
was found. Thus we obtain the map predictor

fpredictor = fihreshold © fprediction 0= 0 @)

that can be incorporated into the RL loop, as illustrated in
Figure 2. The final prediction-based map is synthesized by

T T
Encoder

Input:
Observation

Output:
Prediction

Decoder

Fig. 1: Autoencoder-based map predictor. The neural network is symmetric
with eleven convolution encoder layers and eleven deconvolution decoder
layers. Each encoder layer is additionally connected to its counterpart in the
decoder. Input - a partial observation of a building. Output - the probability
for each cell of being a wall.

Proposed Method

g ? Agen
i Map 5 R Motion response
| N R M N - ¥ Controller -
: u Accumulated (il o Synthesized | Path -
| observations map

e w7

Fig. 2: The proposed cascaded control scheme of the our agent. On the left
hand side is our contribution including X - the observations accumulation
operator, and © - the observations and prediction synthesis operator. On the
right hand side is a common control scheme of an autonomous agent.

Autonomous Agent

overlaying the observed sections of the map.

In effect, the predictor acts as a learned estimate of the
state transition function (dynamics) of the MDP to be solved.
As such, it also affects the reward function by providing fore-
sight with respect to future exposure. Therefore, one might
consider the combined setup in which the DRL-based motion
planner is trained with the predictor as model-based. Fur-
thermore, assuming the prediction chosen thresholds ensure
a reasonable F1-score, the augmented observations map can
also serve as the outputted constructed map. This provides
an additional means to shorten the mapping duration, by
expanding the uncovered areas at any given time.

VII. SIMULATIONS
A. Simulation Testbed

A simplified grid world simulation was set up in Python,
in which the mapping agent, situated in a certain cell, is free
to move to any of its eight neighbouring cells, provided they
are vacant. The agent is equipped with 16 fixed on-board
range sensors arranged in equal angular intervals of 22.5°
with an effective range of 20 cells.

B. Training Sets

The map prediction and motion planning networks were
trained on two distinct datasets, dubbed D; and D-. Dataset
D; holds 50,000 independently generated maps, and Do

TLTT ! TTIT? [T T

- ——1|H|_—4 e EHEN —llllr

—|l:|'_ —1:]_—.:: ﬂa_—j}— TS H O H

DM Posd Bran Dol Crad
= -

Adb TR T

Fig. 3: Illustrative floorplan examples. The top row includes examples from
D1 and the bottom row includes examples from D2

TABLE I: Datasets characteristics

Datasets
Dl DQ
$ ||_Contour Convex (rectangle) | Convex/Concave
%E Size 3,720 (0) cells 2,140 (1,100) cells
= 3 % Walls 7.3% (0.4%) 3.9% (2.0%)
=~ Topology | Similar Diverse

10545

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

contains 15,894 maps from the HouseExpo dataset in [16].
Several examples from each dataset are displayed in Figure
3. Table I shows a qualitative and statistical comparison
of the geometrical features that characterize each dataset,
highlighting the diversity of D,. This fact is later shown to
influence the mapping success rate, as summarised in Table
1L

After training the predictor the thresholds were tuned. We
chose Opee = 0.93, Sopstace = 0.95 for Dy and Opee =
0.9, Sobstacte = 0.99 for Do, which yielded a minimal Fj-
score of 0.92.

Separate DRL-based motion planners were trained for
different values of the required exposure percentage. In the
following we will present results for 85% and 98%.

C. Simulation Results & Analysis

Three proposed motion planning algorithms were evalu-
ated and compared to the baseline cost-utility variation of the
frontier-based planning presented in [13]: frontier-prediction-
based, model-free PPO, and model-based PPO.

In order to assess the different algorithms we ran them on
100 maps from each dataset with different desired exposure
amounts. These maps were excluded from the training set
of the PPO algorithms. The success criteria was reaching
the exposure requirement in under 400 steps. A summary
of the performance of each algorithm over the simulation
runs in which all algorithms succeeded is shown in Table II.
The results are given in terms of the achieved reduction in
mapping time relative to the frontier-based algorithm. The
upper value in each cell is the time-saving percentage, the
values in round brackets are the standard deviations, and the
values in the squared brackets are the success rates over all
runs. In the sequel we discuss the failed mapping instances.

Our main conclusions from this analysis are:

Predictor contribution: The predictor improves dramati-
cally the performance of the mapping procedure. For both
datasets and in both required coverage the predictor reduces
the required mapping time by 60% to 75%. It shows the
strength of the predictor including for the Dy’s diversed

TABLE II: Relative Mapping Duration Reductions

Motion Planner

Frontier-
PPO
PPO based with
with ..
prediction prediction
32.10% 7531% 77.59%
Dy | 11.63%) | (5.07%) (4.05%)
N 459 [100%] [100%)] [100%]
3 ¢ 12.07% 57.75% 61.90%
2, Dy | 2022%) | (18.09%) | (16.77%)
5 [96%] [100%)] [99%)]
~ 21.91% 71.80% 75.18%
S Dy | 9.88%) (5.12%) (4.21%)
2 1| oga [97%] [100%] [97%]
3 5.11% 57.28% 63.78%
Dy | (25.16%) | (16.69%) | (14.24%)
[87%] [99%] [91%]

buildings case. In D; and 98% required coverage while using
PPO and without predictor, normalized (number of steps per
1,000 pixels in grid) mean required mapping steps is ~66
and it reduces to ~21 while adding predictor. In Dy adding
predictor reduces the normalized mean required mapping
duration from ~ 63 to ~ 28 steps.
DRL planner contribution: Without predictor, mapping
using PPO is equal and even better comparing to the frontier-
based method, in 10 to 50 percents (for completed episodes),
while the difference is higher for the well ordered dataset
D; and lower for Ds. These results seams to improve the
reported results in [8] [9] [10] where RL was nearly optimal.
Yet, the predictor’s contribution is the primary and DRL’s
contribution is the secondary.
Datasets uniformity: In the ordered D; the advantage of
PPO over the frontier-based is much more significant, see
Table II. This is not surprising: D; is subjected to much more
strict statistics, so learning from examples is much more
officiant. However, we assume that if we had bigger dataset
to train Ds, the RL model could utilize it to understand
the statistics of the buildings better for achieving better
performance. RL algorithms try to optimize the sum of the
overall decaying rewards while the frontier-based algorithm
looks greedily for the optimal step. This difference leads to
changes between the path created by the various algorithms,
as depicted in Figure 5. The frontier-based algorithm goes
in straight lines along walls and toward corners entering side
rooms, while the path caused by PPO zigzagging mainly in
the middle of corridors.
Failures: We experienced some failure episodes, caused by
two reasons: First, the predictor may suggest a room to be
inaccessible with a false positive error of identifying a space
as a wall, while the agent is inside that "closed" room. In
such a case, both frontier-based and RL algorithms failed.
Second, RL algorithm may fail and go in circles, till the
time allocated to the episode is finished, and we relate to this
phenomena in Section IX. In our evaluation, the fraction of
failures episodes was relatively low: not more than 4 percents
for all configurations and datasets, excluding the case of Dy
with required coverage of 98%, in which the failure rate was
13% without predictor and 9% with predictor. Note that the
failures stated in Table II are not really total failures: even for
the unsuccessfully episodes, final coverage was about 90%.
In Figure 4 we compare the exposure propagation of
the mapping process for both D; and D,. As seen, PPO
algorithm always yields better results than frontier-based,
while the PPO combined with predictor returns the best
results. The improvements in total mapping time presented in
Table II is clearly seen: e.g. while in Figure 4a the frontier-
based curve (in Green) converges at ~ 300 steps, the PPO
with predictor curve (Blue) converges at ~ 75 steps.

VIII. FUTURE WORK

In future work we intend to implement the methods
described in this paper in a lab setting. We also plan to extend
the current problem to include multiple cooperative agents

10546

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

100 4

)

Exposure (%

—— PPO with prediction

204 —— Frontier based with prediction
PPO

—— Fronier based

100 150 200 250 300
Number of Steps

°
w |
3

(a) Exposure propagation in D1

100 4

Exposure (%)

—— PPO with prediction

—— Frontier based with prediction
PPO

—— Fronier based

[50 100 150 200 250 300
Number of Steps

(b) Exposure propagation in Do

Fig. 4: Average exposure propagation over each dataset for a target value
of 98%. Note that before the exploration starts the cells near the external
walls are predicted as vacant, hence the exposure propagation starts with
approximately 40% coverage.

and to develop fitting DL and DRL-based strategies for such
multi-agent systems.

IX. CONCLUSIONS

Two learning-based methods were proposed to address
the indoor mapping problem in cases where statistical ar-
chitectonic information about the environment is available.
One is to train the motion planner through reinforcement,
in an endeavor to incorporate the prior structural knowledge
directly into the decision making process. The other is the in-
clusion of a map predictor capable of expanding the explored
areas in the map. The PPO algorithm was chosen in order
to train the motion planner, realized as a neural network.
The map predictor — a convolutional autoencoder — was
trained on partial observations in a supervised manner. Two
motion planning architectures were examined: one including
only the DRL-based planner and another incorporating the
map predicting network as well. Several versions of both
setups were produced after training on one of two distinct
datatsets for different specified desired exposure percentages.
Their performance was compared, through simulation, to two
instances of a cost-utility frontier-based algorithm: one with
the addition of the map predictor and one without.

Of the examined configurations the combination of the
DRL-based motion planner and map predictor yielded the

L=

(a) Frontier-based path
example in D; (323
steps)

(b) PPO path example in
D, without the predictor
(267 steps)

(c) PPO path example in
D;, with the predictor
(75 steps)

(d) Frontier-based path
example in Dy (233
steps)

(e) PPO path example in
D, without the predictor
(195 steps)

(f) PPO path example in
D,, with the predictor
(89 steps)

Fig. 5: Paths generated by the frontier-based method and PPO with and
without predictor, for representative examples from our two datasets. The
required exposure rate in all cases is 98%. The traced paths, in red, start
from the blue circle (top left corner) and end at the green star.

best results, in terms of the mapping duration, where the
better part of the mapping time reduction was evidently
achieved by the map predictor. However, with respect to the
success rate, we found that in some instances the trained
planner would reach a point of indecision. This would
cause a jitter in the agent’s path and, in extreme cases,
failure to complete the mapping in the allotted time. In real-
world applications, where the system cannot tolerate any
misconduct, a frontier-based algorithm can also be integrated
into the motion planning logic, along with the DRL-based
planner. Thus, if a deadlock is reached the frontier-based
planner can serve as a recovery mechanism (similar to [9]).
In this way we can eliminate any misbehaviour by the trained
motion planner and achieve a perfect success rate.

We have demonstrated how prior knowledge of the under-
lying statistics of a given problem can substantially improve
its solution. In the case of indoor mapping we managed to
achieve a significant reduction in the mapping duration by
incorporating the environment’s structural statistics into the
motion planning process. In light of the results presented
in this paper, it is our view that utilization of any such
available data should be a central component while designing
autonomous agents.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

[2] R.S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks and

10547

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

[5]

[6]

[8]

[9]

[10]

[11]

[12]

tree search,” Nature, vol. 529, pp. 484-503, 2016. [Online]. Available:
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,
and D. Hassabis, “Mastering the game of go without human
knowledge,” Nature, vol. 550, pp. 354—, Oct. 2017. [Online].
Available: http://dx.doi.org/10.1038/nature24270

B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. ’Towards New
Computational Principles for Robotics and Automation’, 1997, pp.
146-151.

R. Shrestha, F-P. Tian, W. Feng, P. Tan, and R. Vaughan, “Learned
map prediction for enhanced mobile robot exploration,” in 2019
International Conference on Robotics and Automation (ICRA). 1EEE,
2019, pp. 1197-1204.

A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi,
Z. D. Guo, and C. Blundell, “Agent57: Outperforming the atari hu-
man benchmark,” in International Conference on Machine Learning.
PMLR, 2020, pp. 507-517.

S. Barratt, “Active robotic mapping through deep reinforcement learn-
ing,” arXiv preprint arXiv:1712.10069, 2017.

F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration
and mapping for mobile robots via deep reinforcement learning,” in
Aiaa scitech 2019 forum, 2019, p. 0396.

N. Botteghi, B. Sirmacek, R. Schulte, M. Poel, and C. Brune, “Re-
inforcement learning helps slam: Learning to build maps,” The In-
ternational Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 43, pp. 329-335, 2020.

F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” I[EEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610-617, 2019.

A. Ramezani Dooraki and D.-J. Lee, “An end-to-end deep rein-
forcement learning-based intelligent agent capable of autonomous

(13]

[14]

[15]

[16]

10548

exploration in unknown environments,” Sensors, vol. 18, no. 10, p.
3575, 2018.

S. Y. Hayoun, E. Zwecher, E. Iceland, A. Revivo, S. R. Levy,
and A. Barel, “Integrating deep-learning-based image completion
and motion planning to expedite indoor mapping,” arXiv preprint
arXiv:2011.02043, 2020.

J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1-18, 2015.

X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using convolu-
tional auto-encoders with symmetric skip connections,” arXiv preprint
arXiv:1606.08921, 2016.

T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng,
“Houseexpo: A large-scale 2d indoor layout dataset for learning-
based algorithms on mobile robots,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 5839-5846.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on April 16,2024 at 15:48:51 UTC from IEEE Xplore. Restrictions apply.

