

Learning to Explore Indoor Environments using Autonomous Micro Aerial Vehicles

Yuezhan Tao, Eran Iceland, Beiming Li, Elchanan Zwecher, Uri Heinemann, Avraham Cohen, Amir Avni, Oren Gal, Ariel Barel, and Vijay Kumar

Enhanced Exploration of Unfamiliar Indoor Spaces with Autonomous Aerial Robots, Achieving over 50% Efficiency Improvement using Machine learning Tools

Μοτινατιον	Methodology					
 Autonomous exploration has many direct real-world applications Learn to explore instead of model-based approach Deploy on SM/aP constrained MAMs 	Training Samples □ 50,000 synthetic examples □ Electr maps include		Action Modeling 0 – stay put, 1 – turn right, 2 – turn left, 3 – move forward, 4 – turn right and move forward, 5 – turn left and move forward			

Upploy on SVVaP constrained MAVs

PROPOSED SYSTEM

- A mapping & DL-based prediction module that construct occupancy maps and predict occupancy information for efficient exploration
- □ A DRL-based planning module that leverages the prediction and observations to select exploration actions that gather informative observations

HARDWARE PLATFORM

	_	_			

Occupancy Predictor

- □ Standard convolutional Encoder-Decoder:
 - 21 Encoding + 21 Decoding layers
 - Skip connections between each
- Dynamic thresholding during exploration
- \Box F₁ > 0.92 with 98% coverage

Observation Space

□ Last action (to handle drone's dynamics) Building map in two resolutions

 20 cm^2 per pixel

5 cm^2 per pixel

RL Planner

- □ Standard CNN for feature extraction
- Additional fully connected layers (separate for actor and critic)

Reward

□ Reward based on prediction if collision $\square \ \mathcal{R}(t) = -1 +$

Training

Train in two phases: Without prediction

RESULTS

Simulation Experiments

Table I: Averaged mapping path length (m) in Gazebo

Method	(A)	(B)	(C)	(D)
Frontier	125.0	108.8	132.7	110.0
Fuel	123.6	122.0	128.6	106.0
Frontier + Predictor	83.0	60.4	69.2	63.0
FUEL + Predictor	77.3	64.7	74.7	67.8
DRL + Predictor (ours)	50.2	49.3	66.3	47.4

Computation Experiments

Real-World Experiments

The proposed method achieves a 50-60% shorter overall path length compared to the classic and the state-of-the-art methods

arXiv:2309.0698