

Probabilistic Gathering of Agents with Simple Sensors

Ariel Barel, Rotem Manor, and Alfred M. Bruckstein Computer Science Department, Technion – Israel Institute of Technology * This research was partly supported by Technion Autonomous Systems Program (TASP)

TECHNION Israel Institute of Technology

1. Abstract

Novel probabilistic gathering algorithms for agents that can only detect the presence of other agents behind them.

Agents Properties:

- Identical and Indistinguishable .
- Oblivious (have no memory)
- Have limited visibility
- No explicit communication
- No common frame of reference (GPS, compass)

The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval.

2. Sensing and Dynamic-law

Sensing:

 On-Board Backward Looking Binary Sensor

 $s_i(k) = \begin{bmatrix} 1, & \text{agent } i \text{ rear half plane does not contain agents} \\ 0, & \text{otherwise} \end{bmatrix}$

Dynamics:

- · All agents whose rear half plain does not contain other agents (e.g. $s_i(k)=1$) jump forward
- Then all the agents change their orientations by choosing a uniformly distributed random heading directions

4. Discrete time

Convergence time vs. number of agents. The effect of the number of agents on the convergence time is linear.

spread of 50 by 50 area and step-size 1. This process ran for 75 repetitions with different random initial constellations.

7. Formal proof

Theorem 1. Piece-wise continuous dynamics converges to a region of radius δ in finite expected time. Principle of the proof:

Figure 7. Agent s at the sharpest corner of the convex-hull is shown with its sensing area. Black arrow shows the selected heading direction.

The "continuous version" ensures gathering to within a region of diameter 2δ . Gathering happens in finite expected time, proportional to δ^{-1} , i.e. the blind spot of radius $\boldsymbol{\delta}$ is absolutely necessary for finite expected time convergence.

8. Conclusions

Discrete time - found experimentally to gather the agents to a minimal enclosing circle of radius 1, in time proportional to the number of agents. Continuous time - formal proof that the

system converges to a region of radius $\boldsymbol{\delta}$ in finite expected time.

Contact

Ariel Barel

Technion - Israel Institute of Technology, Computer Science Department

arielbarel@gmail.com http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2017/CIS/CIS-2017-04 Phone: +972-77-8874898

References