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Novel probabilistic gathering algorithms for 
agents that can only detect the presence of 
other agents behind them. 
 
Agents Properties: 
§  Identical and Indistinguishable 
§  Oblivious (have no memory) 
§  Have limited visibility 
§  No explicit communication 
§  No common frame of reference (GPS, 

compass) 
 
The analysis of the gathering process 
assumes that the agents act synchronously 
in selecting random orientations that remain 
fixed during each unit time-interval.  
 

1.	Abstract	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

4.	Discrete	time	

Theorem 1. Piece-wise continuous dynamics 
converges to a region of radius δ in finite 
expected time. 
Principle of the proof: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The “continuous version” ensures gathering 
to within a region of diameter 2δ. 
Gathering happens in finite expected time, 
proportional to δ−1, i.e. the blind spot of 
radius δ is absolutely necessary for finite 
expected time convergence. 

7.	Formal	proof	

Discrete time – found experimentally to 
gather the agents to a minimal enclosing 
circle of radius 1, in time proportional to the 
number of agents. 
Continuous time – formal proof that the 
system converges to a region of radius δ in 
finite expected time. 

8.	Conclusions	

5.	Simulations	Results	
Enclosing circle radius 

vs. number of time steps 

pi(k)	

pj(k)	d=1	
pi(k+1)	

Lyapunov	Function	

Convergence time vs. number of agents. 
The effect of the number of agents on the 
convergence time is linear. 
 
 
 
 
 
 
 
 
 
 
 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

6.	Continuous	time	

2.	Sensing	and	Dynamic-law	
Sensing: 
•  On-Board Backward Looking Binary 

Sensor 
1,    agent i rear half plane does not contain agents 
0,    otherwise 

 
Dynamics: 
•  All agents whose rear half plain does not 

contain other agents (e.g. si(k)=1) jump 
forward 

•  Then all the agents change their 
orientations by choosing a uniformly 
distributed random heading directions 
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3.	Why	“probabilistic”?	

Figure	1.	A	rare	case	of	consistent	dispersion	in	two	agents,	due	
to	”malicious”	heading	directions	

Figure	 3.	 Simulation	 result	 on	 30	 agents,	 with	 initial	 random	
spread	of	50	by	50	area	and	step-size	1.	
	

Figure	4.	Simulation	result	
on	40	agents	
	

Figure	 5.	 Simulation	 result	 on	 150	
agents	
	

Agents dynamics in 

Chart	1.	Convergence	time	vs.	number	of	agents.	Initial	random	
spread	of	50	by	50	area	and	step-size	1.	This	process	ran	for	75	
repetitions	with	different	random	initial	constellations.		

Figure	 7.	 Agent	 s	 at	 the	 sharpest	 corner	 of	 the	 convex-hull	 is	
shown	 with	 its	 sensing	 area.	 Black	 arrow	 shows	 the	 selected	
heading	direction.	

Conditional forward jump – no agents behind	 Conditional move – no agents in sensing 
region	

Figure	 2.	 Agent	 i	 jumps	 a	 unit	 step	 since	 there	 are	 no	 agents	
behind	it,	while	agent	j	stays	put.	

Figure	6.	The	dashed	region	of	half-plane	missing	half-disc	
centered	at	pi	is	the	sensing	coverage	area	of	agent	i	with	its	
dead-zone	of	radius	δ.	Agent	k	stays	put	while	the	others	travel.	


